Reprinted from the Journal of the American Ceramic Society. Vol. 68, No. 1. November 1985.
Copyright 1985 by The American Ceramic Society

Microstructure-Strength Properties in Ceramics: 1, Effect of
Crack Size on Toughness

ROBERT F. COOK,"* * BRIAN R. LAWN,* and CAROLYN J. FAIRBANKS”
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A systematic study of the inert-strength characteristics of ce-
ramics as a function of crack size relative to grain size has been
made using controlled indentation flaws. The focus of the test
program is on aluminas, with barium titanates and glass-
ceramics providing support data in confirmation of general
trends. On progressively diminishing the indentation load, the
strengths first show a steady increase, but subsequently tend to
a plateau, as the contact size begins to approach the character-
istic grain size. A simple extension of conventional indentation
fracture mechanics theory (incorporating residual contact
stresses) is developed to describe this scale transition. The basis
of the analysis is the postulated existence of a “microstructural
driving force,” grain-localized at the center of the pennylike
radial crack, in direct analogy to the indentation driving force.
This description provides closed-form solutions to the fracture
mechanics equations, such that the data are interpretable in
terms of an apparent R-curve function. Only two quantities are
required to specify the function completely, one relating to the
macroscopic toughness determined from large-scale crack
specimens and the other to a microstructure-associated stress
intensity factor. These quantities are advocated as useful re-
liability parameters. It is found that the second quantity can
vary widely from material to material, even within a given
class, to the extent that materials which show superior strength
characteristics at large indentation loads may be dramatically
weaker at low loads. The indications are that, at least for
aluminas, the key to such weakening effects is to be found
in the grain-boundary structures. The study emphasizes the
need for extreme caution in extrapolating macroscopic-crack
data unconditionally into the microscopic-flaw region, and for
more fundamental investigations into the underlying physical
processes actually responsible for the microstructural driv-
ing forces.

I. Introduction

MODERN—DAY theories of the strength of ceramics rely heavily
on the precepts of fracture mechanics —in particular, that
the flaws responsible for failure have the character of well-defined
cracks in elastic continua. It is therefore implicit that the “laws” we
use to describe fracture processes, most notably those involving
toughness (equilibrium fracture) and crack velocity (nonequi-
librium fracture) parameters, are continuum based. Such a descrip-
tive basis would appear to be perfectly justifiable in the case of
glasses and fine-grained polycrystals where the scale of the typical
fracture event greatly exceeds that of the material microstructure.
The question arises as to the applicability of these fracture mechan-
ics descriptions to ceramics with coarser microstructures, such that
the size of the strength-controlling flaws is of the same order as the
grains themselves. Is it valid to extrapolate from toughness and
crack velocity test data on large-scale crack specimens to this
microscopic-flaw region?

There is now considerable evidence, particularly from the frac-
tographic studies of Rice and co-workers, to suggest that micro-
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structure can indeed be an important factor in characterizing the
strength of ceramics.'™'* Generally, there is a tendency for the
strength to be somewhat smaller than one would expect from
macroscopic toughness values as the measured flaw size gets
smaller. The prevailing interpretation of this tendency is that the
material toughness must increase in some systematic manner with
crack size, in direct analogy to the R-curve effects reported in
other, crack propagation configurations: at the lower end of the
crack-size spectrum the toughness is determined by single-crystal
cleavage energies (transgranular fracture) or grain-boundary ener-
gies (intergranular fracture); at large crack sizes the microstructural
influence is “averaged out,” and the toughness becomes represen-
tative of the polycrystalline aggregate.

Thus far there has been little serious effort to provide a detailed
analysis of the crack/microstructure size dependence of toughness
for incorporation into a strength formulation. Evans et al.'*'®
constructed empirical toughness functions which do indeed ac-
count for the R-curve phenomenology, but made no attempt to
justify their functions in terms of actual strength data. Rice and
Lewis'* suggest that these functions are not fully consistent with
the strength data that are available. The lack of consensus here
simply reflects the fact that conventional strength testing, relating
as it does to the characteristics of naturally occurring (e.g., ma-
chining or processing) flaws, does not possess the necessary ele-
ment of experimental control for definitive evaluation of crack-size
dependencies in the failure mechanics. There is, for instance, the
contentious issue as to whether small-scale flaws fail spontane-
ously from their initial configuration®® or undergo a stage of stable
(equilibrium) growth prior to instability.'*"'® It is clear that unless
we can contrive our flaw population in such a way that the location
of the critical member may be predetermined, thereby allowing for
direct observation of the response to the applied stresses, such
issues will not be easily resolved.

Our way of controlling the fracture origin is to introduce inden-
tation flaws into the prospective strength specimens. The associ-
ated crack patterns are geometrically well-defined and, despite the
presence of residual contact stress fields, are amenable to rigorous
fracture mechanics analysis at all stages of their evolution.'’™*'
Most important, the size of the cracks can be varied systematically
via the contact load, thereby allowing for controlled progression
from macroscopic to microscopic domains. It has been demon-
strated that the simple inverse relations between strength and con-
tact load derived on the basis of a continuous solid structure hold
well for relatively homogeneous materials, e.g., silicate glasses,
over a large range of flaw sizes.'*** Since the proportionality terms
in these relations strongly involve the material toughness,'™? it
may be expected that microstructural effects should show up as
systematic departures from ideal behavior in the low-load region.
Such departures have indeed been reported in two recent studies,
on alumina® and glass-ceramic®® materials. It is the need for a
detailed fracture mechanics formulation of these potentially im-
portant influences on strength properties (particularly in the context
of design) which provides the primary motivation for the work to
be described here.

Accordingly, we shall use the indentation technique to in-
vestigate the microscopic-to-macroscopic crack-size transition in
“coarse-grained” ceramics. The presentation will be in two parts.
Part I will deal with the manifestations of this transition in tough-
ness properties, and Part II similarly in fatigue properties. Alumina
will constitute our “model” ceramic for the bulk of the experi-
mental study, but results will also be presented on barium titanate
and glass-ceramic materials to demonstrate the generality of the
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procedure. The data trends will be shown to be consistent with a
simple R-curve function based on the notion of a “grain-localized”
crack driving force.> It will be seen that the microstructural influ-
ence can be dramatic, both in the reduction in the apparent tough-
ness in the microscopic region and in the range of crack sizes
(relative to some characteristic microstructural dimension) over
which this influence persists.

One aspect of the microstructural problem which will not be
addressed explicitly here is the underlying cause of the crack-size
transition. Various possible contributing factors have been dis-
cussed in the literature,' including crack pinning, deflection and
branching, the initiation and coalescence of microcracks, and the
generation of internal stress fields (e.g., due to thermal expansion
or elastic anisotropy). It is self-evident that a fundamental descrip-
tion of crack-size effects ultimately rests with a proper under-
standing of these factors. Currently, this understanding is almost
totally lacking; definitive experiments to determine which con-
tributions dominate in specific material types do not abound in the
ceramics literature. The virtue of the fracture mechanics analysis
to be developed in this study is that, provided we are content with
a phenomenological account of the toughness properties, we can
set up a theoretical framework without any knowledge of physical
processes whatever. By independently developing an engineering
formalism for the crack-size transition we can hope to provide a
sound basis for reliability evaluation and, at the same time, to
establish a rationale for the future study of specific microstructural
mechanisms.

II. Fracture Mechanics Model

The starting point in the fracture mechanics analysis is the stress
intensity factor for a pennylike indentation crack of characteristic
radial dimension ¢ produced at a peak contact load P and sub-
sequently subjected to an applied tensile stress o, (Fig. 1). Our
objective is to modify the conventional formulation'®**?¢ in such
a way as to allow for an increasing contribution as the crack size
diminishes in scale relative to some characteristic microstructural
dimension d. Accordingly, for equilibrium fracture (pertinent to
inert-strength testing conditions) we may write, following Ref. 24

K =K, + K,
= Yo.c'? + xP/c** = K| m

where ¢ and y are dimensionless crack geometry and elastic-
plastic constraint “constants,” respectively.” The terms K, and X,
in this expression represent corresponding contributions to the net
crack driving force from the applied loading and the residual con-
tact fields. The problem now reduces to one of determining K. as
an appropriate function of ¢, with some provision for incorpo-
rating (either explicitly or implicitly) the microstructural scaling
parameter d.

In determining such a function, we need to satisfy the limiting
condition that K should tend to the polycrystalline toughness, K
say, as ¢ becomes large relative to the scale of the microstructure.
In accordance with the R -curve notion, this function should dimin-
ish monotonically as ¢ becomes small. Previously,™ it was argued
that the microstructural influence could be considered to be
“grain-localized” at the center of the pennylike radial crack, effec-
tively giving rise to a microstructural stress intensity factor K., in
much the same sense as the indentation influence manifests itself
as the residual stress intensity factor K, in Eq. (1).""* In terms of
this analogy we may write the crack-size dependence of the tough-
ness function in the form

K. =KZ — K,
= K> — pQ/c** ()

"These “constants” may not be material independent. In particular, it can be shown
that x « (E/H)"2, where E is Young’s modulus and H is hardness (Ref. 19).
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Fig. 1. Schematic of indentation fracture geometry
in material with well-defined microstructure. Con-
figuration illustrated is for Vickers pyramid indenter
in normal contact (load P ), with one of two mutually
orthogonal pennylike radial cracks oriented for
maximum tension in subsequently applied stress
field (stress ;). Dimensions a, ¢, and d characterize
scale of central hardness impression, radial crack,
and microstructure “grains,” respectively. Typically,
c is 2 to 3 times a at completion of indentation cycle
and extends stably by a further factor of ~2.5 during
an inert strength test.

The quantity uQ has the interpretation of a “microstructural driv-
ing force,” real or effective, analogous to xP in the indentation
formalism. This implied “equivalence” between indentation and
microstructural stress intensity factors has to be seen for what it
is—a device for obtaining a working fracture mechanics equation.
Our justification for proceeding this way is that Eq. (2) will lead
us to closed-form solutions in the strength formulation below. The
test of the usefulness of the approach will be in the success with
which we can account for the trends in actual strength data.

Equations (1) and (2) may now be combined to give the modified
stress intensity factor for equilibrium indentation cracks

K=K, + K, +K,
= Yo.c'? + (YP + pQ)/c** =K? 3)

It will be seen that this expression has exactly the same crack-size
dependence as its unmodified counterpart (cf. Eq. (1)); effectively,
all we have done is to replace xP in the old expression by the
composite force yP + uQ. Explicit solutions for the strength may
now be obtained in the usual way. Thus in the limit of large cracks,
i.e., P > pQ, we may appeal directly to previous work'®*® for
the maximum applied stress that the indented specimen can sustain

oh = 3K2 /4y (xP)" (4a)

where the superscript P is to denote an “indentation-controlled”
region of behavior. The simple inverse relation between strength
and contact load alluded to in the Introduction is in evidence in
Eq. (4a). Now in the opposite limit of small cracks, i.e.,
xP < pQ, we may proceed by direct inspection to write down a
solution of identical form

0'9, = 3K:4/3/44/3¢(}LQ)”3 (4b)

with the superscript O denoting a “microstructure-controlled” re-
gion. The important difference in this second limiting solution is
that the strength is no longer dependent on load. Figure 2 shows
Eqgs. (4a) and (4b) as straight lines in (logarithmic) .., (P) coordi-
nates. The intersection point at P = P * in this plot conveniently
delineates the two regions of behavior. We may note that by equat-
ing o, and o2 we obtain

XP* = pQ ®)

which offers the prospect of “calibrating” the unknown micro-
structural driving force parameters in terms of measurable values
of P*.
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Fig. 2. Normalized plots of strength vs indentation load. Solid curve is
general solution (Eq. (8)) and dashed broken lines asymptotic to this curve
are limiting solutions (Eqs. (4a) and (4b)). Intersection point between latter
two solutions conveniently distinguishes indentation- and microstructure-
controlled regions of behavior. Dashed line at left is potential lower-bound
solution at small loads, obtained by reevaluating Eq. (4a) with K? (single-
crystal or grain-boundary toughness) in place of K (polycrystalline
toughness).

It is instructive at this stage to derive a more general strength-
load formalism from Eq. (3), starting from first principles. It is
readily seen that K(c) passes through a minimum for any specified
P and o,. The extremum condition dK /dc = 0 therefore defines
the crack configuration at which the equilibrium becomes unstable.
Applying this condition to Eq. (3) gives, in conjunction with
Eq. (5), the critical crack size at instability

cm = [3x(P + P*)/yo,]"
= [4x(P + P¥)/KIT? ()

where o, is the corresponding critical applied stress. In com-
parison with the initial crack size at o, = 0

co =[x + P¥/KIT? (7a)

we have c,./co = 4> = 2.5, signifying a stable growth stage prior
to failure independent of the relative values of P and P*. We may
note a special case of Eq. (7a) at P = 0

c§ = (xP*/K2)*® (7b)

corresponding to the minimum flaw size that the microstructure
can apparently sustain. Any flaw nucleus, however small initially,
will tend to “pop in” to this value.

Equation (6) may now be solved for the critical stress

o, = 3K:4/3/44/3¢X 1/3(P + P*)us
O',Q,.P*M/(P + P*)m
OZPIB/(P + P*)m 8)

where we have invoked Eqs. (4) and (5). The second and third
forms of this result are useful for demonstrating the manner in
which the function o,,(P) asymptotically approaches the limiting
cases considered earlier. A plot of this general function is included
in Fig. 2. It will be noted from Eq. (8) that of the three measurable
material constants 0%, o P'?, and P*, only two are required to
provide a unique determination of the strength characteristics in
Fig. 2.

Consider now how this formulation bears on the use of the
indentation flaw method to measure toughness.** In the idealized
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Fig. 3. Normalized plot of apparent toughness vs indentation load
(Eq. (10)), showing R-curve behavior. Upper-bound (K7) and (potential)
lower-bound (K?) limits are indicated. Note that P* uniquely determines
“range” of microstructural influence.

theory for homogeneous materials, as represented by Eq. (4a), the
toughness may be evaluated from

K = (256y°x/27)"(ah P )" ©

When microstructural effects are present, Eq. (9) retains its valid-
ity only in the limiting region of large P. Thus, whereas experi-
mentally we measure a value o, at given load P, e.g., at point B
in Fig. 2, Eq. (9) relates theoretically to the corresponding value
along the asymptotic o, line, i.e., point A. It is clear from Fig. 2
that the deviation between points A and B becomes greater as the
test load diminishes, so the potential discrepancy in toughness
evaluations takes on increasingly significant proportions as we
enter the microstructure-controlled region. Accordingly, taking
Eq. (9) in conjunction with Eq. (8), we may define an “apparent”
toughness

Kgpp = K?(O’mP IIS/U:P 113)3/4
= KI[P/(P + P¥)]"* (10$)

A plot of KPP(P) is given in Fig. 3. Special note may be made of
the tendency for K& to level out at the polycrystalline toughness
K at P > P*, and to fall off monotonically in the low-load region
P < P*. Qur description contains the essential ingredients of R-
curve behavior. The R-curve, as traditionally defined, expresses
the apparent toughness determined from the applied loading as a
function of crack size. In terms of Eq. (2), the R -curve function is
expressible as the function K /(c). The function K#?(P) in Eq. (10)
embodies the same information, but expresses it instead as a func-
tion of the more accessible variable P.

An important issue which needs to be addressed here is that of
a lower bound for KZ”. There is no provision in Eq. (10) for such
a limit; at P — 0 we have K#” — 0. It has been suggested by
others that the apparent toughness should not drop below the value
appropriate to either single-crystal or grain-boundary fracture, de-
pending on whether the cracking mode is transgranular or inter-
granular. We indicate such a bound by the cutoff line K¢ in Fig. 3.
This kind of cutoff would be manifest in the strength plots of Fig. 2
as a transition onto the oL (K?) line at low P.

Thus far the formulation has been developed exclusively in
terms of effective point “driving forces” yP and uQ. The advan-
tage here is the accessibility of indentation load as an independent
test variable; P can be measured directly and Q can be determined
via the transition load P*. However, there are many who prefer to
think in terms of characteristic scaling dimensions, as indicated in
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Table 1. Specifications for Materials Used in This Study*

Major phase Microstructure, Specimen dimensions’
Material Designation Preparation (%) d (um) (mm)
AlLOs Sapphire? Verneuil 100 D) 25 x 1
AD999* Sintered 99.9 3 (D) 25 x 2
AD90* Sintered 90 4 (D) 25 X 2
Vistal (VI1)* Sintered 99.9 20 (D) 25 X 2
Vistal (VI2)* Sintered + aged 99.9 25 (D) 25 x 2
F99* Hot-pressed 99 6 (B) 40 X 5.5 X 4
HW! Sintered 99.7 35 (B)40 X 5 %X 3
BaTiO; CH** Sintered 99 7 B)25 x5x%x3
NRL1" Hot-pressed 99.5 1 (B)36 X 5 X 2.5
NRL2™ Hot-pressed 99.5 150 B)36 x5x%x25
Glass-ceramic SL1* Heat-treated 17 (B)25 X 5.5 X 3.5
SL2# Heat-treated 20 (B) 25 X 5.5 X 3.5
SL3% Heat-treated 41 (B) 25 X 5.5 X 3.5
VPI1*%® Heat-treated 1.3 (D) 12.5 x 1
VPI2%* Heat-treated 1.1 (D) 12.5 x 1
VPI3* Heat-treated 1.6 D) 125 x 1

*Table includes materials used in other laboratories. (D) = disks, (B) = bars. *Adolf Meller Co., Providence, RI. #Coors Porcelain Co., Golden, Co. YFreiderichsfeld Co.,
GmbH, Mannheim, West Germany. Haldenwanger Co., West Germany. **Channel Industries, Santa Barbara, CA. Naval Research Laboratories, Washington, DC. **Sandia
Laboratories, Albuquerque, NM (lithia-silicate glass-ceramics; see Ref. 28). #Virginia Polytechnic Institute, Blacksburg, VA (cordierite glass-ceramics, from Corning base glass,

Coming Glass Works, Corning, NY; see Ref. 25).

Fig. 1: that is, indentation half-diagonal a for the flaw size, grain
diameter (or interparticle mean free path, whichever is more ap-
propriate) d for the microstructure size. The requisite connecting
relation for the indentation parameters is straightforward

P = aHa® 11)

where H defines the material hardness in terms of the contact
pressure and a is a geometrical constant (¢ = 2 for Vickers
indenters). The corresponding relation for the microstructural
parameters cannot be specified in explicit form without a priori
knowledge of underlying mechanisms, in which case we can only
write

Q = pfld..) (12)

with 8 another geometrical constant. For the special case of geo-
metrically similar processes it can be shown that Q o« d** (so that
K., in Eq. (2) is uniquely determined by the scaling ratio c/d),**
which leads to the classical strength/grain-size relation 02 « d ="
inEq. (4b). 1-3 However, other than to note the inverse dependence
here, we shall give no further consideration to the manner in which
d enters the general strength formalism.

III. Experimental Procedure

A comprehensive indentation-strength test program was carried
out on three groups of ceramic materials: aluminas, barium ti-
tanates, and glass-ceramics. These materials are listed in Table I,
along with pertinent information on preparation, composition, and
scale of microstructure. The aluminas were chosen for specially
detailed study, mainly because of their availability in a wide range
of microstructural forms, including sapphire. The barium titanates
and glass-ceramics were included in the study to examine the
generality of the phenomena. These material listings incorporate
results from previous investigations in our laboratories***"*® and by
Pohanka at the Naval Research Laboratories*”?® (barium titanate)
and Hasselman’s group at Virginia Polytechnic Institute®® (glass-
ceramic). Some of the specimens were conveniently supplied in the
form of disks ready for biaxial testing. The others came as plates
and were subsequently cut up into bars for uniaxial bend testing.
The edges of the latter specimens were rounded in an attempt to
minimize spurious failures from handling damage. Most of the
materials were tested with their surfaces in the as-fired state;
where the presence of surface compressive stresses was suspected

(e.g., due to sawing or machining),” the specimens were either
annealed or polished.

The bulk of the specimens were indented at the centers of their
prospective tensile faces with a Vickers diamond pyramid. With
the bars, care was taken to orient one set of radial cracks normal
to the prospective tensile axis. Some specimens were left unin-
dented as controls. Contact loads used covered the range 0.5 to
300 N, although in most of the materials this range was restricted,
at the low end by the tendency for “naturally occurring” flaws to
dominate the indentation flaws and at the high end by excessive
chipping. All indentations were made in air and were allowed to sit
for no more than 30 min before strength testing.

The biaxial strength tests were made using a flat circular punch,
thickness 4 mm, on 3-point support, diameter 20 mm.*' The uni-
axial strength tests were made in 4-point bending, inner span 7 mm
and outer span 23.5 or 38 mm (depending on the available lengths
of the bars). A drop of silicone oil was placed onto the indentation
site prior to breaking, and the failure times kept below 20 ms
(using a piezoelectric cell to record the load at fracture®), to
minimize fatigue effects in the results. (It will be recalled from
Section II that the assumption of equilibrium conditions in the
fracture process requires that the strengths be measured in strictly
inert environments.) Strength values were calculated from the
breaking loads and specimen dimensions using thin plate®' and
beam®® formulas.

Special care was taken to examine all specimens after strength
testing to verify the contact site as the origin of failure. At the
higher indentation loads the incidence of contact-source failures
was almost invariable. At the lower loads the success rate dimin-
ished markedly. In such cases the “unsuccessful” tests were simply
incorporated into the data pool for the unindented controls. Selec-
tive observations were also made on some of the specimens during
the testing, particularly on the aluminas, using an inverted micro-
scope fixture.'® In this manner the critical indentation flaw re-
sponse could be followed directly during the evolution to final
instability. These latter observations were useful in confirming that
the radial crack system was always “well developed” (i.e., ¢ =
2a; see Fig. 1)*? at failure, over the entire range of indentation
loads used.

IV. Results

Figures 4 to 6 are plots of the inert strength vs indentation load
results for the aluminas, barium titanates, and glass-ceramics, re-
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Fig. 4 (this page and facing page). Plots of inert strength vs indentation
load for selected aluminas. Upper scale in each plot is converted from lower
scale via Eq. (11), using hardness values in Table II. Data for AD999 and
VI2 materials include results from Ref. 24.

spectively. Each data point represents the mean and standard devi-
ation (evaluated in logarithmic coordinates) of 10 to 15 specimen
breaks from indentation flaws at a prescribed load. The hatched
region at the left of each plot represents a similar evaluation for
breaks from natural flaws. The solid curves are least-squares best
fits to the indentation data sets in accordance with Eq. (8) using 02
and o, P'? as adjustable parameters. These parameter adjustments
define the asymptotic limits to the general strength function (i.e.,
corresponding to the solutions of Eq. (4)), as indicated by the
broken lines in the plots. The values of 2 and o}, P thus ob-
tained, along with P* = (o, P'*/a%)’ (see Eq. (8)), are listed in
Table II. This table, which includes independently determined
values of toughness and hardness, provides us with all the informa-
tion that we need to quantify the microstructural effect for each
material.

It will be noted in Figs. 4 to 6 that the tendency for the strength
curves to “saturate” out at o2 in the low-load region is much
stronger for some materials than others. This indicates consid-
erable variability in the microstructural crack driving force term
1@ in Eq. (3) (or equivalently, in yP* in Eq. (5)), even within a
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given class of materials. To show these intracomparisons more
clearly, we have replotted the fitted curves for all materials within
each group (in each instance covering only the load range used)
onto “master” diagrams, Figs. 7 to 9. Special attention may be
drawn to the fact that several of the curves intersect each other,
particularly in the case of alumina (Fig. 7). It is therefore apparent
that materials which show good strength characteristics at high
loads do not necessarily do so at low loads. The dangers associated
with unconditional extrapolation of data from macroscopic-crack
tests into the practical domain of small-scale flaws are obvious.

An instructive way of demonstrating the universality of the
R-curve behavior in the materials studied is to plot the results as
K#?/K? vs P/P* according to Eq. (10), using o1, P "> and P* from
Table II as normalizing parameters. Figures 10 to 12 are com-
posite plots of this kind for the aluminas, barium titanates, and
glass-ceramics, respectively. The theoretical prediction (solid
curve from Fig. 3) fits the data points within the standard deviation
error bounds (omitted here for clarity). This plotting scheme high-
lights the usefulness of P* as a parameter for characterizing the
degree of microstructural influence: those materials with large P*
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(most notably the VI aluminas in Fig. 10 and the NRL2 barium
titanate in Fig. 11) plot way down on the curve, amounting to as
much as a factor of 3 in apparent toughness reduction; those mate-
rials with small P* barely deviate from the polycrystalline tough-
ness plateau at the far right of the curve.

Let us now look more closely at the results in the asymptotically
limiting regions of P > P* and P < P*. The large P limit takes
us into the conventional domain of continuum-based solutions, so
we deal with it first. From Eq. (9) we see that the parameter
o+, P'? appropriate to this domain relates to the polycrystalline
toughness, K. Accordingly, plots of o5, P ”* vs K (where data on
the latter quantity are available, Table II) are shown in Figs. 13 and
14 for the aluminas and barium titanates. The straight lines in these
figures are fits of slope 45 in logarithmic coordinates, in line with
the assumed constancy of ¢ and y in Eq. (9). The degree of

*Once again it is pointed out that this assumption may not always hold good.
Strictly, the abscissa in Figs. 13 and 14 should contain a factor (H/E)"8, by virtue of
the material dependence of y.'®?* However, this is not a rapidly varying quantity
within most groups of materials.
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correlation observed here is not atypical of the general indentation
toughness testing methodology.?~*

The response at small P, if more complex, relates more closely
to the microstructural effects of primary interest here. The first
thing that may be noted is the tendency in many instances in
Figs. 4 to 6 for the o2 asymptote to extrapolate to the unindented
strength level. It would seem that the very same microstructural
forces embodied in the K,, term in the indentation expression
Eq. (3) are instrumental in determining the severity of the naturally
occurring flaws. It follows as a corollary that the flaw populations
in such instances are material intrinsic. On the other hand, there are
several materials with relatively high o2 values for which the
asymptotic extrapolations lie well above the unindented strengths.
In these latter cases the inevitable intrusion of extrinsic failure
origins, e.g., pores in the disk specimens and edge flaws in the
bars, precluded extension of the data range into the plateau region.

The second point that draws attention in this plateau region is
the apparent absence of any low-load cutoff response of the type
indicated in Figs. 2 and 3. Such a cutoff, it will be recalled
(Section II), has been proposed by some to occur when the flaws
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Table II. Mechanical Parameters of Test Materials*
o2 e P* K= H
Material (MPa) (MPa-N'3) N) (MPa*m'?) (GPa)
AlLO; Sapphire 0.7 x 10° 660 0.08 x 107° 2.5 21.8
AD999 488 883 5.9 3.9 20.1
AD90 658 682 1.1 2.9 13.1
VIl 329 1034 31.0 19.1
VI2 302 1231 69.4 4.6 19.0
F99 920 763 0.57 16.0
HW 271 1083 63.8 17.0
BaTiO; CH 124 215 52 1.05 5.2
NRL1 123 160 2.2 0.84
NRL?2 85 279 354 1.35
Glass-ceramic SL1 252 348 2.6 4.39
SL2 257 406 3.9 4.27
SL3 249 508 8.5 4.75
VPI1 288 401 2.7 7.78
VPI2 246 529 9.9 7.42
VPI3 280 560 8.0 7.33

*Values obtained from independent large-crack techniques in these laboratories by S. M. Wiederhorn, D. B. Marshall, S. W. Freiman, and us.
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Fig. 6. Plots of inert strength vs indentation load for selected glass-ceramics; data for VPI materials reproduced from Ref. 25.
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Fig. 10. Apparent toughness as function of indentation load for alumi-
nas; data from Fig. 4 (error bars omitted), theoretical curve from Fig. 3.
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Fig. 13. Plot of o, P" vs K7 for aluminas, demonstrating cor-
relation between indentation-strength data in large-P limiting re-
gion and macroscopic toughness values.

become so small as to be wholly encompassed within some control-
ling element of the microstructure. It could be argued that we are
unlikely ever to be able to detect limiting behavior of this kind,
owing to the increasing dominance of natural flaws (extrinsic or
intrinsic) at lower P values (Section III). Nevertheless, there is one
critical feature in the strength/indentation-load plots which is
highly suggestive as to what may and what may not control the
low-load response. This is the tendency in the master plot of Fig. 7
for the ¢ plateau in the aluminas with the most_ pronounced
R-curve behavior, particularly the VI grade materials, to cross well
below the corresponding data line for sapphire. A measure of the
scale of this crossover is that at the low end of the working load
range in Fig. 7 the strength of sapphire is more than twice that of
VI2 alumina. The implication here is that the small-scale fracture
response is governed not by bulk cleavage properties, but rather by
the energetics of some relatively weak grain interface. Unfortu-
nately, the same assertion can not be made for the barium titanates
and glass-ceramics in Figs. 8 and 9, for in those cases the appropri-
ate single-crystal or matrix materials were unavailable to us to
establish a reference data line. However, the fact that pronounced
plateaus are as evident in these other material types as in aluminas
would seem to suggest some commonality in the underlying micro-
structural driving forces.

It is in this context that the direct surface observations referred
to in Section III proved especially useful. Generally, the inden-
tation cracks in the materials studied did follow an intergranular
path, although some transgranular fracture was observed in the
initial extension from the impression corners. These characteris-
tics were most readily seen in the VI2 grade alumina. Figure 15
is a typical example. Here the cracks begin their growth evolution
in much the way as might be observed in sapphire,” but de-
flect immediately into the interfacial boundaries on reaching the
extremities of the containing grains. In some cases the cracks re-
emerged from the boundaries to pass through, rather than around,
isolated grains. A similar interplay between intergranular and
transgranular modes was noted by Smith and Pletka.*® On applying
an external tensile stress the cracks began to extend, tracing tor-
tuous paths on the specimen surface, ultimately more than dou-
bling their initial lengths. The picture that we arrive at is one of
segmented crack propagation, averaging over the ultimate fracture
surface such that the grain boundary becomes the controlling factor
in the toughness.

To pursue this point concerning the inevitability of grain-
boundary interaction one stage further, we may refer to the al-
ternative, upper scale in Figs. 4 to 6, where we have plotted the
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indentation dimension a using Eq. (11) (with H from Table II,
where available). This dimension is about 1 order of magnitude
smaller than the size of the critical radial crack, tip to tip, tak-
ing 2¢,, = 5¢o = 10a (Fig. 1). When account is taken of the values
of the microstructural dimension d in Figs. 4 to 6, it is seen that
the cracks must almost certainly intersect at least one boundary en-
route to failure, even at the lowest indentation loads used.

Finally, the question may be raised as to which material parame-
ters control the strength response in the low-P limiting region.
Equation (4b) indicates that K7 remains a factor in the general
accounting, but this is clearly not the key parameter. If it were, we
would expect 0% to correlate well with o, P>, We have already
pointed out the lack of such correlation in the alumina master plot
of Fig. 7, where the tendency for the curves to cross each other is
pronounced. The next factor we might expect to have an important
influence in Eq. (4b) is d, via Eq. (12). There is some indication
from the progressively diminishing plateau levels for AD999, VII,
VI2, and HW in Fig. 7 that the microstructural influence does
increase with grain size. However, this still cannot be the whole
story. The F99 alumina has a grain size intermediate between
AD999 and VII1 (Table I), yet barely shows the beginnings of a
low-load plateau. It could be argued that compositional additives
must play some role in the microscopic fracture process, since
of the five aluminas just mentioned F99 is the only one not speci-
fied as a “high-purity” material by the supplier. It is clear that we
need to know more about the manner in which these composi-
tional additives enter the host material, particularly at the grain
interfaces.

V. Discussion

We have shown, using controlled indentation flaws, that the
apparent toughness of ceramic materials can diminish dramatically
as the scale of the fracture process reduces toward that of the
microstructure. We have also shown that this kind of R-curve
behavior can be accommodated within a simple fracture mechanics
framework, by representing the microstructural crack driving force
as a center load (real or effective) uQ on a pennylike crack system,
in analogy to the center load yP associated with the residual
indentation. As is evident from the fits to the strength data in
Figs. 4 to 6, the theory provides a reasonable representation (i.e.,
within standard deviation error bounds) of the transition from
microstructure-controlled failure at small ¢ to indentation-
controlled failure at large c¢. Thus we have, for the first time, a
means of quantifying the microstructural influence on toughness in
terms of routinely measurable experimental parameters; recall that
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Fig. 15. Micrograph showing Vickers indentation (P = 20 N) in
VI2 alumina. Grain boundaries revealed by thermal etching prior to
indentation. Note how radial cracks begin their initial growth evo-
lution within individual crystal grains but tend thereafter to deflect
into grain boundaries.

any two of the quantities 02, o, P ', and P* (Table II) are suf-
ficient to specify the entire strength/indentation-load response for
a given material.

To put all this into a proper perspective, it is important to
identify those features which distinguish the present approach from
the procedures adopted in the past. The first is the facility to control
the size of the flaw, via the indentation load, so that the transition
region between microscopic and macroscopic extremes may be
explored in a systematic manner. This element of control is almost
totally absent in postmortem fractographic methodologies®>® where
one is reliant on a widely distributed natural flaw population to map
out the transition. Moreover, there are potential complications
associated with crack geometry, residual stresses, etc., which tend
to be overlooked in the failure analysis from natural flaws. The
second feature is the amenability of the indentation system, by
virtue of its well-defined configurational state, to explicit charac-
terization in stress intensity notation. Attention may be drawn here
to the way the center-loaded penny-crack representation referred to
above allows us to set up Eq. (3) as a starting equation which can
be solved in closed form, without in any way losing sight of the
factors which make up the net fracture driving force. There are
alternative treatments which reject this geometrical simplification
in search of a superior indentation-load/crack-size function® (in
analogy to our Eq. (7)); but these almost invariably contain an
element of empiricism which tends to obscure the necessary phys-
ical bases for setting up any kind of strength analysis at all.

Some details of the microscopic-macroscopic transition behav-
ior warrant further consideration here. It is convenient to begin at
the large P end of the scale. We have seen that the strength-load
parameter appropriate to this region, oh,P'”, scales with K7
(Figs. 13 and 14). The intimation is that the indentation testing
approach, as embodied in such relations as Eq. (9), may be re-
tained for evaluating conventional toughness properties, provided
that we use only asymptotic data limits in these evaluations. Of
course, all this is contingent on whether or not it is the macroscopic
toughness that we should be interested in. It could be claimed that
it is precisely the opposite end of the load scale which must deter-
mine the strength properties in most practical applications, for it is
in this domain that natural flaw populations usually reside. Thus,
as we progress down the R-curve in Figs. 10 to 12 we obtain
toughness values which differ increasingly from those measured on
large-crack specimens, but which at the same time become more
representative of true flaw response.

Accordingly, let us turn our attention to the fracture mechanics
formulation which allows us to describe the transition into this
low-load domain. The key to the formulation is the ¢ ~*? de-
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pendence of the microstructural stress intensity factor K, in
Eq. (3). The validity of this functional dependence is reflected in
the fits between the theoretical curves and experimental data in the
strength plots of Figs. 4 to 6 and the “R-curve” plots of Figs. 10
to 12. One might be justifiably surprised as to how good the fits
appear to be in these plots, for two reasons. First, the value —%:
for the exponent in the ¢ dependence of K. is contingent on the
assumption that the microstructural force Q is localized at the crack
center. Rice et al.” have indicated that the net driving force is more
properly evaluated in terms of the integrated contributions from all
microstructural elements (grains, second-phase particles, etc.) in-
tersected by the crack plane. The effect of such a distributed force
configuration would be to increase the range of the microstructural
influence, i.e., to reduce the magnitude of the negative crack-size
exponent. In terms of the strength plot of Fig. 2, this increased
range would be manifested as an extension of P* further out along
the load axis (accompanied, of course, by a flattening of the
curve). However, even without this modification the value of P*
can be quite large. Taking the VI2 alumina in Fig. 4 as an extreme
example, P* = 69 N or, equivalently, a* = 43 um,; together with
the specification d = 25 um for this alumina and our earlier as-
sessment =~10a for the critical crack size at failure (Section IV),
we are talking about a range of influence of some 17 grain di-
ameters in the region of microstructure-controlled fracture. This
compares with the somewhat higher estimates of 50 to 100 grain
diameters by Rice et al.”

The second reason for surprise is that our function K.(c) is
continuous, yet we are dealing with materials which have discrete
grain structures. The point can be made that effects of discreteness
would tend to smooth out rapidly, since the number of grains
traversed by the expanding radial crack front must increase in
approximately quadratic manner with ¢. Nevertheless, the the-
oretical fits to the data appear to hold good down to the lowest
loads achieved in Figs. 4 to 6. Special mention may be made in
this context of the VPI glass-ceramic data in Fig. 6, where the
smallest cracks are comparable to the crystallite size.* Here again,
the stable crack extension during stressing to failure must
have a smoothing effect. While on this subject of discreteness it
may be pointed out that if one regards the high-load to low-load
transition as abrupt (so that linear fits are made through, rather
than asymptotic to, the data on either side of this transition), the
conclusion may unjustifiably be drawn that the behavior is fun-
damentally inconsistent with ¢ ~*? dependencies in the stress
intensity factors.”

Proceeding down the crack-size scale to the limit at low P, we
find ourselves becoming involved in the issue of intergranular vs
transgranular fracture. Unfortunately, the physical factors which
control this competition are not well understood.> The evidence in
this study, at least for the aluminas, suggests compellingly that it
is the grain-boundary and not the bulk-crystal properties which
hold the key to the strongest low-load turnovers in our strength
curves (Fig. 7). In this interpretation, the X,, term in Eq. (3) is
manifest as a progressive “weakening” of the boundary cohesion at
diminishing crack sizes. Whether such weakening is associated
with purely geometrical perturbations in the crack growth (in
which case the K, term in Eq. (3) should strictly be regarded as an
effective, rather than real, driving force) or with internal micro-
stresses is something that remains unanswered at this stage.” It
would seem that a more fundamental investigation of grain-
boundary structures is needed to resolve questions of this kind, and
thence to explain why it is that the VI2 alumina in Fig. 7 turns over
so much more dramatically than the F99 alumina. The ultimate
prospect is that one may be able to tailor ceramic interfaces so as
to optimize the strength properties at all levels of crack size.

Having just made the case for the importance of grain-boundary
structures, we should emphasize that materials which fracture
transgranularly will not necessarily be immune to microstructural
influences. There is nothing in either the geometrical perturbation
or microstress processes which is exclusive to intergranular frac-
ture. Indeed, there is some evidence that the larger grain-size
barium titanates (e.g., NRL2, Fig. 8) do fail in a transgranular
mode.*” The implication from the present study is simply that the
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strongest effects will be felt by those materials which have the
weakest internal interfaces.

One of the conclusions drawn from our consideration of the
strength data in Section IV was that the natural flaw distributions
in materials with strong low-load turnovers tend to be structure
intrinsic. The reason for this is that the microstructural driving
force (K,») has a stabilizing influence on crack growth. The most
definitive indication of such an influence is the precursor growth
stage in the strength tests. It is here that direct observations of
indentations are especially valuable; a posteriori fractographic ex-
aminations of natural failure origins have not proved effective in
detecting the existence of such a growth stage.

Finally, some comment is in order concerning the value of our
method as a tool for characterizing microstructure-strength proper-
ties. It is well to remember that our fracture mechanics relation for
the microstructural contribution to the crack driving force has a
phenomenological ring to it. The treatment allows us to account for
crack-grain scaling (R-curve) behavior without having to identify
the underlying physical processes. This gives us readily mea-
surable parameters (2, P*) for specifying the magnitude and
range of the microstructural influence. From the standpoint of
design, such parameters provide a scientific basis for extrapolating
microscopic crack growth laws into the domain of natural flaws.
Given that a particular material does exhibit strong plateau behav-
ior at low indentation loads, the parameter o2 establishes an appro-
priate design strength; we then have a specification which, by the
very nature of the stabilizing influences referred to in the previous
paragraph, is insensitive to extraneous factors which might other-
wise cause significant changes in the flaw population. Through the
use of indentation flaws, this specification may be made with
optimal simplicity, accuracy, economy, and unambiguity, thereby
affording a sound rationale for materials-selection decisions.

VI. Conclusions

(i) Controlled indentation flaws constitute a powerful experi-
mental methodology for the systematic study of microscopic-
to-macroscopic (R-curve) crack-size effects in inert strength
characteristics.

(i) A fracture mechanics formulation, based on the assertion
that the microstructural driving force for fracture may be regarded
in terms of center-loaded penny-crack configurations (in direct
analogy to the residual indentation driving force), fits the observed
decline in “apparent” toughness on entering the domain of low
contact loads.

(iii) This R-curve behavior can be specified explicitly in terms
of a single additional quantity (o2 or P*) over and above that
needed to define the conventional macroscopic toughness response
(ohP'?). Tt is suggested that these easily determined quantities
should be useful as reliability parameters.

(iv) Different materials, even within a given class, can show
great variability in toughness characteristics in the small crack-size
region. Moreover, this variability is such that the inert-strength/
indentation-load curves (e.g., Fig. 7) can cross each other, indicat-
ing the extreme danger of using toughness values from large-crack
specimens to predict the response of natural flaws.

(v) For those materials with pronounced low-load plateaus in
Figs. 4 to 6, the data fits extrapolate to the strengths levels for
natural flaws. This shows that the same microstructural driving
forces which act on the indentation flaws must also act on the
natural flaws, implying that the populations in the latter case can
be structure intrinsic.

(vi) The “range” of the microstructural influence can be sub-
stantial, extending in extreme cases (e.g., VI2) to well over
15 grain diameters.

(vii) The treatment presented here is formulated without com-
mitment to specific physical processes. However, it is suggested
that the indentation analysis should prove useful as a means for
rationalizing the future study of these processes. Thus, for in-
stance, the study of grain-boundary structures (notably in the alu-
minas) may be expected to provide valuable information on the
sources of microstructure-controlled fracture.
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